Riding out the Wave: Wells National Estuarine Research Reserve

After our departure from the Whites in New Hampshire, we headed back to Maine and checked into the Alheim Commons Dormitory at the Wells National Estuarine Research Reserve on Saturday evening. First thing on Sunday, we headed to Wells Beach (learning can be so rough sometimes)! Upon arrival, we took some time to reflect and observe the area which is often something that we forget to do in our fast paced lives.
We noticed the sounds, smells, what we saw (whether it be man-made structures or how high the tide was), and how the sand felt between our toes or which way the wind might have been blowing. These observations helped us make conclusions as we went to three different beaches.
We talked about the significant longterm effects of man-made structures (jetties and seawalls) and how they can affect the energy or power of the waves on shoreline sediment transport, which then ultimately affects the coarseness and build up of the beach sediment. We estimated the longshore current velocity by calculating the movement of a tennis ball in the water. We concluded that the longshore current was twice as fast in the open beach at Wells and Drake’s Island compared to Crescent Beach in Cape Elizabeth. This is due to Crescent Beach having more protective barriers such as its swooping shape, reefs, and offshore sand bars which absorb some of the energy of the waves. Sand grains were finest at Crescent because the there isn’t enough wave power to bring in heavier sediments.
The beach is officially not just a place to get sunkissed skin and salty hair. There is A LOT going on from the moment your toes hit the sand to the point they hit the water (but of course we got some down time to get our tan on too).

 

 

 

 

 

 

 

— Kaitlynn Hutchins

Group of students at mountain hut

Mount Washington: Out of Our Comfort Zone and into the Clouds

Mount Washington Summit, “Home of the World’s Worst Weather”

This past week allowed many of us to step out of our comfort zone and test our limits in the White Mountains of New Hampshire. Mount Washington is the highest peak in northeastern North America and known as the “Home of the World’s Worse Weather.” After riding in a van to the summit, we were given the opportunity to descend from the Alpine Garden to Lakes of the Clouds. Standing right on the ridge, we witnessed the “orographic effect” first hand. It occurs when cold air rises over the top of the ridge, forming a cloud. Then, as the air descends the other side of the ridge, the air warms and the cloud vaporizes. Although it was foggy, the experience was still exhilarating!

Environmental Science Semester students hiking at headwall of Huntington Ravine

We spent the night at the Appalachian Mountain Club (AMC) Lakes of the Clouds Hut. We continued our journey down Tuckerman’s Ravine bright and early the next morning. About half way down, we stopped for a “yellow notebook moment” where we applied what we previously learned to our observations.

yellow field notebook
Rite in the Rain yellow field notebook

Tuckerman’s Ravine is a glacial cirque. This means the glacier carved out the side of the mountain. Imagine a scoop carving out a giant mound of ice cream, slowly, over thousands of years. In this moment it was amazing to see that all of our hard work really paid off. Although it was a long, intense journey down, the views of the cirque and alpine environment were absolutely gorgeous. It was something many of us have never been given the chance to experience. So far, this opportunity has allowed us to explore the world from a much different perspective!

Group of students at mountain hut
Environmental Science Semester students and faculty at AMC Lakes of the Clouds Hut on Mount Washington, NH

As the first week comes to an end, we’re off to our next stop: Wells National Estuarine Research Reserve in Wells, Maine.

-Becca Regan

The Adventures of Crawford Notch

On Sunday, August 12th, we met in Portland to depart on our ten week trip to learn new content, explore new places, and experience new things. We headed for the AMC Highland Center at Crawford Notch, part of the White Mountain National Forest in New Hampshire. We stopped along the Saco River along the way to learn about grain size, the energy of the current, and river depth. When we got to the Highland Center it was cloudy but the views were still amazing!

The first class being covered is Glacial Geology and Climate Change. We’ve been learning about glacier formation, movement, and erosion features. To see real life examples of the concepts, we hiked Mount Willard on our third day. Mount Willard overlooks Route 302 and Crawford Notch with 4,000 foot mountains on either side, a textbook example of a U-shaped valley created by a glacier that carved its way through during the Pleistocene glaciation.

When we aren’t in the field learning, we are in class learning about what we will be seeing in the field. For the last four days, class time has been broken up throughout the day by intense games of cornhole, cribbage, spoons, ping pong, quick hikes, food breaks, and wildlife sightings. On the fourth day of our stay, Dr. Erikson informed us of a bear cub and mom that he had just seen near the Mount Washington Resort. We quickly piled into the van and, sure enough, came upon a crowd of people taking pictures. A first bear sighting for most of us! After watching for a while, we drove back toward the Highland Center and came up on more cars pulled over. Another bear? No, this time a moose! Another first for some of us. Thanks to Jarrett’s moose call we were able to get a good picture with the young bull. What a great first four days with a great group of people!

Stay tuned for more!

-Caleb Gravel

The Power of Immersion: Why the Environmental Science Semester Works

People have heard of experiential education.  This is the educational practice in which learning is enhanced and made meaningful by engaging with and working with the subject matter, as opposed to just reading or hearing about a topic.  The Environmental Science Semester takes experiential education to a new level and requires a different name. We’re calling it immersion education–students are immersed off campus and in the field only in the study of environmental and marine science topics for ten weeks.  

Students will live and breathe glacial geology, climate science, marine ecology, and oceanography day in and day out.  It will seep into their pores.

The immersion educational experience has led previous ESS participants to report that they not only remember and understand so much more of what they’ve learned on the ESS compared to normal classes, but they can also remember when and where they learned most of it.  

When I return in October, I won’t return with the same students I left with.  They won’t be the same people – they will be transformed into confident students and practicing scientists who have shared an experience that bonds them to each other and to our team of faculty for a lifetime.  

We’re off on another ESS!  And I couldn’t be happier!

         Dr. Johan Erikson

 

Casco Bay Science and Recreation

Our second home base while on our schooner adventure was Hermit Island. Don’t let the name fool you though, it isn’t actually an island! Getting to Hermit involved some beautiful warm, but slow, sailing. At one point, after seeing a small pod of porpoises, the waters of outer Casco Bay were so calm the captain issued a swim call, which meant it was time to get wet! Many jumped off the Bagheera while some stayed on deck and watched the fun unfold. The waters were slightly cold but that’s expected for a swim in early October.

swim-group-from-bagheera

We arrived via the Bagheera right as the sun was beautifully setting in the distance, and Dr. Erikson shuttled us and our gear to the campsite. Tents and dinner were prepared in the dark with our only light source being our head lamps as the days keep getting shorter and shorter. An early bedtime in preparation for a new day followed soon, but not before a campfire was made to roast marshmallows!

new-meadows-coring

After breakfast the next day we again boarded Bagheera to head to the New Meadows River estuary. This estuary is restricted with little flushing of water, and therefore we expected this might be a place with some stratification caused by density differences of the fresh and salt water. As we took sonde measurements (temperature, salinity, pH etc.) heading up the river from mouth to head of the estuary we observed the highest chlorophyll amounts of the trip so far, up to 18 micrograms/L! This indicates a large nutrient input most likely from the river and runoff which fuels phytoplankton production. Along with the sonde data we also took a core sample from the sediments deep below the water. We watched as our coring device, which looks like a long metal tube with teeth inside, plummeted down to the bottom and slowly got cranked back up with some human horsepower. This core sample was smooth, similar to an ice cream consistency! There were no sand particles present, it had a deep dark mud color and was also pretty smelly due to hydrogen sulfide. This smell indicates this was most likely an anoxic mud layer full of organic matter. As we left the estuary, we had a short lecture on how large fish kills can occur due to anoxic conditions in the estuary. As the stay filled with science and adventure came to an end, we once again enjoyed a shuttle ride to the campsite. These shuttle rides were short, but I particularly enjoyed reading all of the names of the lobster boats as we rode through. The stay on Hermit island was short, but the memories will certainly last much longer!

-Jess Selva ’17

Waves, WWII (and a bit or rain) on Jewell Island

It was a gloomy, rainy morning as we boarded the Bagheera on Peaks Island and set sail to Jewell Island in Casco Bay. We stopped at various places near islands to collect data from a CTD sonde, which measures temperature, salinity, pH, dissolved oxygen, turbidity and chlorophyll at various depths. We also took a core sample of the top 20 cm of the seafloor sediment by dropping a coring device attached to a cable off of the foreboom. Then we reeled it in and analyzed the muddy sediment. Once on Jewell Island we lowered our dry bags and food into Dr. Erikson’s little boat that we are towing for the entire voyage. Getting all of our gear to shore took several trips. We set up tents before it got dark and started getting dinner ready. The rain let up for a little bit until dinner time, when it picked up again, but fortunately we had a big group tent that could keep all of us out of the rain.

The following day we had lecture at the island’s Punchbowl. Here we learned about wave structures and how the two sides of the Punchbowl were affected differently by the same incoming wave sets. One side of the Punchbowl had rough waves and the other side was calm with hardly any waves flowing in, due to the friction generated by the shallowness of the bottom. We saw a dead seal that was missing its tail fins and you could see the jaw of the seal. It was so interesting, yet saddening at the sight of the poor mammal. We moved to the calmer side of the Punchbowl, where we learned that area was a big nursery during the summer months for organisms because predators could not get to them due to the water being so warm and shallow.

punchbowl

After lunch we went on a hike through the island. We saw two towers used for triangulation during World War II. One tower was about 5-6 stories high. From the top we saw above the trees the entire island, Portland, Halfway Rock and many miles out to sea. We reached a part of the island that had the WWII tunnels where ammunition and communication equipment were stored. We walked through the tunnels with many side rooms, large and small. On the far side of the tunnels, we reached what was left of large gun turrets. The structures were so fascinating and a part of history I didn’t know even existed from World War II.

jewell-tower

-Danielle Martin’19

Side Trip Through History

The Pemaquid peninsula  is not only a beautiful place to study coastal marine ecology, it is also a place rich with the history of colonial New England and the fishing and seafaring communities that settled here. We took a short break from intensive writing sessions to enjoy a few hours exploring this history on a beautiful autumn afternoon.

?

We visited Fort William Henry and the Colonial Pemaquid Restoration, at the entrance to the inner Pemaquid harbor. This site was once an important fishing outpost, and as a trading center, protected by the British colonists with a series of forts. Each fort succumbed to French or native raiders, who would also lay ruin to the adjacent village. From 1635 to the 1790s, the fort and village were settled, razed, and resettled numerous times. The end of the French and Indian wars and the American Revolution brought an end to the need for a fort, and the village declined in importance relative to other regional settlements – but this site preserves the rich history of early colonial days and the rough life of a northern New England settlement. The present-day fort was reconstructed in 1908, and the archeological site includes re-creations of early buildings, such as the waddle and daub lined wood house, where a wonderful guide in period dress walked us through the history. The students tell me the site also houses Pokemon(s).

restoration

The Pemaquid lighthouse is another wonderful historic site, an iconic lighthouse and one of the most depicted from the Maine coast – its image is found on the Maine state quarter. Situated on a fantastic rocky promontory, it’s a wonderful place to explore the formations of the Maine coast (micaceous schists, right students?) and learn the history of lighthouses in New England.

lighthouse

We all went up into the lighthouse for a view, and scrambled on the rocks for a relaxing diversion from the academic grind. This is one “lesson” they’ll keep with them always.

ben-on-rocks

-Greg Teegarden

A River Cruise

This past Thursday, our group embarked on a day long adventure out of the Darling Marine Center on the research vessel Ira C. We were introduced to Captain Robby Downs as he showed us how to operate the CTD instrument and how to interpret the data on a computer. The CTD measures temperature, salinity, chlorophyll, density and depth in a vertical water column. The study took place on the Damariscotta River which is an estuary. An estuary is generally known as the area in which salt water and fresh water meet. On the way down to the first station we saw numerous oyster farms and local wildlife including seals, heron and cormorants. We began our study closest to the river input near the Newcastle bridge, and collected multiple data samples as we moved towards the mouth of the estuary.

dscf2492

At each station we collected zooplankton and phytoplankton samples with plankton nets. We also used a secchi disc in order to determine the depth to which the sunlight penetrates the water. Everyone also took turns deploying the CTD instrument at the different stations. We took the plankton that we collected to the lab at the Darling Maine Center to be examined under microscopes. We found an abundance of different phytoplankton and zooplankton species, each more alien than the next!

dscf2475-1

Overall the experience was very eye opening. It was awesome to spend the entire day on the boat enjoying the crisp Maine weather. As we traveled down the estuary the scenery was astounding, there were clear skies and the leaves were just beginning to change. We also saw lobster men collecting their traps and then later in the day we witnessed them unloading the days catch for sale. We finished off this day with a great dinner at a local lobstah shack.

.img_22899

-Olivia Marable and Ben Poisson

The Wells Estuarine Research Reserve Salt Marsh

After leaving the sandy beaches of Popham, we traveled south to the Wells National Estuarine Research Reserve. Dr. Teegarden switched for the weekend as Dr. Bernaki took over to lead the students through the ecology of plant species on salt marshes (as well as a slight background on birds). The students embarked on a study using image analysis of pictures they took along various transects they set out, to learn about zonation of marsh plants from the land to the ocean’s edge. Pretty easy, right?

The students started learning to use the software in a several hour long exercise as they went through the ‘demo’ of tracing objects on their computer screens. The following days they used their knowledge of the program and constructed their own experiments with the focus on how different species of plants appear in different areas. The students learned statistical approaches to design their experiments, to add rigor to their studies. The pictures were taken using a quadrat to define the study area of interest, and the saved images were then processed in the following days.

dscf2410

The following two days after the data collection were rainy and provided some much needed down time for everyone to get their work done.

After the long weekend, Dr. Teegarden returned as Dr. Bernaki collected the reports the students had worked so hard to complete. That afternoon we had a pleasant boat ride through Wells harbor, and the Webhannet River of the salt marsh. On the ride we learned much about the history of the area, and examined what could happen to the coastal town as sea level continues to rise. From there we packed up the van and continued on our journey to the Darling Marine Center, where we will be finishing off the marine ecology portion of the ESS.

dscf2424-1

-Andrew Merlino

Signs of life at the beach

We made a smooth transition from geological perspectives on coastlines to an ecological perspective by studying how the dynamic sedimentary environment of a beach controls and affects the organisms trying to make a living there. Most visitors to a beach are there to relax, enjoy the lovely scenery, perhaps take a swim, and their thoughts of what might be living there (not just visiting) are dominated by the obvious, such as seagulls looking to steal a cookie, or perhaps wariness of what large toothed fish might be lurking in the waves. A look at the sands below our feet might not stimulate thoughts of life, yet that is where we are looking in this block of Marine Ecology.

dscf2199

The intrepid students had completed a beach profile, documenting the slope of the beach face, and we carefully observed and recorded features of the wave environment, such as breaker height, wave period, and distance of breakers from shore. All of these affect how much the sands are moved by wave action, which can make it easier or more difficult for organisms living there. We learned what allochtonous matter is, an obvious example being the seaweeds ripped up during a recent storm and washed up on the beach, and how that provides a food source for various consumers. With our observer senses on high alert, we started rooting around for organisms, to see the life that might escape the casual observer’s notice.

On the east side of Popham Beach, with its steeper slope and more dynamic wave swash zone, we found fewer forms of life, dominated by small crustaceans called amphipods, sometimes called “beach fleas”, though they do not look like fleas, and do not bite! Larger ones were found in the wrack stranded in the high intertidal. Vigorous digging along a line towards the water revealed no other visible forms of life, but once we reached the swash zone, where water rushes back and forth from the breaking waves, we found abundant smaller amphipods, happily tumbling in the sands, accessing the organic matter stirred up by wave actions. A fine mesh sieve was needed to sample these critters; without it, they would have escaped our notice. The shorebirds, little sandpipers, were certainly well aware of the amphipods and feasted while we sampled.

swash-zone-amphipods

The west side of the beach, with a much shallower slope, sand bars, and much calmer swash zone, harbored a greater diversity of life forms, particularly various worm forms down in the sediments. We even found fish, sand lance, hiding in the sands awaiting the tides’ return. The amphipods of the east beach were much less abundant here, showing us how different energy regimes support very different life forms.

danielle-sand-lance

All in all, the students enjoyed some lovely days at the beach, learned a great deal about life they hadn’t noticed before, and forged the connection between the physical/geological environment and how that constrains and shapes the community of organisms there. There were a few sighs of melancholy bidding farewell to the beach, but many interesting ecosystems await our attentions!

-Greg Teegarden